On Ks, t-minors in graphs with given average degree
نویسندگان
چکیده
Let D(H) be the minimum d such that every graph G with average degree d has an H-minor. Myers and Thomason found good bounds onD(H) for almost all graphsH and proved that for ‘balanced’H random graphs provide extremal examples and determine the extremal function. Examples of ‘unbalanced graphs’ are complete bipartite graphs Ks,t for a fixed s and large t. Myers proved upper bounds on D(Ks,t ) and made a conjecture on the order of magnitude of D(Ks,t ) for a fixed s and t → ∞. He also found exact values for D(K2,t ) for an infinite series of t. In this paper, we confirm the conjecture of Myers and find asymptotically (in s) exact bounds on D(Ks,t ) for a fixed s and large t. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
On Ks, t-minors in graphs with given average degree, II
Let K∗ s,t denote the graph obtained from Ks,t by adding all edges between the s vertices of degree t in it. We show how to adapt the argument of an our previous paper (Discrete Math. 308 (2008), 4435–4445) to prove that if t/ log2 t ≥ 1000s, then every graph G with average degree at least t + 8s log2 s has a K∗ s,t minor. This refines a corresponding result by Kühn and Osthus. AMS Subject Clas...
متن کاملA proof of Mader's conjecture on large clique subdivisions in C4-free graphs
Given any integers s, t ≥ 2, we show there exists some c = c(s, t) > 0 such that any Ks,t-free graph with average degree d contains a subdivision of a clique with at least cd 1 2 s s−1 vertices. In particular, when s = 2 this resolves in a strong sense the conjecture of Mader in 1999 that every C4-free graph has a subdivision of a clique with order linear in the average degree of the original g...
متن کاملForcing unbalanced complete bipartite minors
Myers conjectured that for every integer s there exists a positive constant C such that for all integers t every graph of average degree at least Ct contains a Ks,t minor. We prove the following stronger result: for every 0 < ε < 10−16 there exists a number t0 = t0(ε) such that for all integers t ≥ t0 and s ≤ εt/ log t every graph of average degree at least (1 + ε)t contains a Ks,t minor. The b...
متن کاملForcing large complete minors in infinite graphs
It is well-known that in finite graphs, large complete minors/topological minors can be forced by assuming a large average degree. Our aim is to extend this fact to infinite graphs. For this, we generalise the notion of the relative end degree, which had been previously introduced by the first author for locally finite graphs, and show that large minimum relative degree at the ends and large mi...
متن کاملLogarithmically small minors and topological minors
For every integer t there is a smallest real number c(t) such that any graph with average degree at least c(t) must contain a Kt-minor (proved by Mader). Improving on results of Shapira and Sudakov, we prove the conjecture of Fiorini, Joret, Theis and Wood that any graph with n vertices and average degree at least c(t) + ε must contain a Kt-minor consisting of at most C(ε, t) logn vertices. Mad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008